Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion.

نویسندگان

  • S Herget-Rosenthal
  • M Hosford
  • A Kribben
  • S J Atkinson
  • R M Sandoval
  • B A Molitoris
چکیده

Disruption of the actin cytoskeleton in proximal tubule cells is a key pathophysiological factor in acute renal failure. To investigate dynamic alterations of the actin cytoskeleton in live proximal tubule cells, LLC-PK(10) cells were transfected with an enhanced yellow fluorescence protein (EYFP)-actin construct, and a clone with stable EYFP-actin expression was established. Confluent live cells were studied by confocal microscopy under physiological conditions or during ATP depletion of up to 60 min. Immunoblots of stable transfected LLC-PK(10) cells confirmed the presence of EYFP-actin, accounting for 5% of total actin. EYFP-actin predominantly incorporated in stress fibers, i.e., cortical and microvillar actin as shown by excellent colocalization with Texas red phalloidin. Homogeneous cytosolic distribution of EYFP-actin indicated colocalization with G-actin as well. Beyond previous findings, we observed differential subcellular disassembly of F-actin structures: stress fibers tagged with EYFP-actin underwent rapid and complete disruption, whereas cortical and microvillar actin disassembled at slower rates. In parallel, ATP depletion induced the formation of perinuclear EYFP-actin aggregates that colocalized with F-actin. During ATP depletion the G-actin fraction of EYFP-actin substantially decreased while endogenous and EYFP-F-actin increased. During intracellular ATP repletion, after 30 min of ATP depletion, there was a high degree of agreement between F-actin formation from EYFP-actin and endogenous actin. Our data indicate that EYFP-actin did not alter the characteristics of the endogenous actin cytoskeleton or the morphology of LLC-PK(10) cells. Furthermore, EYFP-actin is a suitable probe to study the spatial and temporal dynamics of actin cytoskeleton alterations in live proximal tubule cells during ATP depletion and ATP repletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery.

Actin cytoskeletal disruption is a hallmark of ischemic injury and ATP depletion in a number of cell types, including renal epithelial cells. We manipulated Rho GTPase signaling by transfection and microinjection in LLC-PK proximal tubule epithelial cells and observed actin cytoskeletal organization following ATP depletion or recovery by confocal microscopy and quantitative image analysis. ATP ...

متن کامل

Rho-kinase regulates myosin II activation in MDCK cells during recovery after ATP depletion.

Alterations in the actin cytoskeleton of renal tubular epithelial cells during periods of ischemic injury and recovery have important consequences for normal cell and kidney function. Myosin II has been demonstrated to be an important effector in organizing basal actin structures in some cell types. ATP depletion in vitro has been demonstrated to recapitulate alterations of the actin cytoskelet...

متن کامل

Site-specific alteration of actin assembly visualized in living renal epithelial cells during ATP depletion.

Disruption of normal actin organization in renal tubular epithelial cells is an important element of renal injury induced by ischemia. Studies of fixed cells indicate that the cytoskeleton is disrupted by both ischemia and ATP depletion in a site-specific manner. However, few studies have examined these effects in living cells, and the relationship between the time course of ATP reduction and a...

متن کامل

Cofilin mediates ATP depletion-induced endothelial cell actin alterations.

Ischemia and sepsis lead to endothelial cell damage, resulting in compromised microvascular flow in many organs. Much remains to be determined regarding the intracellular structural events that lead to endothelial cell dysfunction. To investigate potential actin cytoskeletal-related mechanisms, ATP depletion was induced in mouse pancreatic microvascular endothelial cells (MS1). Fluorescent imag...

متن کامل

ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion.

Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PK(A4.8), and adenovirus containing wild-type (wt), constitutively active, and inactive Xeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001